

Session III: Renewables: Auctions, Selfconsumption and Integration in the network

Case study: Spain

Punta Cana 9.05.2019

Luis Jesús Sánchez de Tembleque

Energy Division of the National Markets and Competition Commission (CNMC)

Evolution of distributed generation (DG)

Circular 1/2011, de la CNE, de petición de información del ejercicio 2010 a remitir por las empresas distribuidoras de energía eléctrica a la CNE para el establecimiento de la retribución a la actividad de distribución y supervisión de la misma https://sede.cne.gob.es/web/guest/circular-1/2011

Boletín mensual de la CNE de Información Estadística sobre las Ventas de Energía del Régimen Especial http://www.cne.es/cne/Publicaciones?id_nodo=143&accion=1&soloUltimo=si&sIdCat=10&keyword=&auditoria=F

Evolution of distributed generation (DG)

Evolution of share of RES in the power system

Capacity installed

Potencia instalada 2017: 108.000 MW

Demanda máxima energía horaria peninsular 44.876 MW (17dic 2007)

Main regulations

- 1. Access and connection regulation
- 2. Juridical regulation
- 3. Technical regulation
- 4. Economic regulation
- 5. Self-consumption regulation
- 6. Guarantee of origin and labeled regulation

1. Access and connection regulation

Third party access to the networks (TPA principle)

The use for the generators/consumers of the transmission and distribution networks are liberalized, through the open access to third party networks (**TPA principle**). But they must pay a regulated tariff.

2. Juridical regulation

Freedom of business installation and free competition

The right to **free installation** and **contract** for liberalized activities – generation facilities and retailers-, **but...** with an **authorization procedure**:

1. Legal capacity

2. Technical capacity

3. Economic capacity

4. Other permissions: environmental, industrial safety,

management of the territory, etc.

The performance of liberalized activities within the **principle of free competition**: Wholesale and Retail trade markets

Problems of distributed generation (DG) in a quasi isolated system

Problems of distributed generation (DG) and regulatory solutions

SOLUTIONS

Solution 1.- Making predictions of generation and fulfill them

- Obligation of market participation: <u>deviations between</u> forecast and real production are penalized (facilities > 15 kW)
- Representative (new agent which brings together several facilities: it is only important the <u>net deviation</u> in the markets daily and intradaily)
- 3. To development of **forecasting tools**
- TSO (REE) developed on 2004 the SIPREOLICO model, for make a global forecast of wind generation: E.g. prediction vs. real

Problems of distributed generation (DG) and regulatory solutions

MAKING PREDICTIONS CONTROL CENTER

SOLUTIONS

Solution 2.- Control Center

Control Center Renewable Energies (CECRE):

Control Center of the TSO where it receive the information in real time from 30-40 private Control Centers that group RES facilities, which must follow orders of the TSO

RES > 5 MW: Obligation to belong to a private Control Center

- RES facilities grouped by connection point
- Voluntary participation in AA.SS (habilitation TSO if > 10 MW)

Problems of distributed generation (DG) and regulatory solutions

Solution 3.- Telemetry

RES > 1 MW: Obligation to send to CECRE energy measures (active and reactive) in real time

Problems of distributed generation (DG) and regulatory solutions

Solution 4.-Robust and meshed transportation network

Robust and meshed transportation network

- 1. It includes 400 kV and 220 kV, and international connections
- 2. Network robust and meshed without significant structural congestions
- 3. Average load line: 20%; load transformer: 35%
- 4. Average technical losses: 2,10%Availability index: 98% (incentive/penalty > 97%)
- 5. But, limited capacity for interconnection with France

Problems of distributed generation (DG) and regulatory solutions

Solution 5.- Withstand voltage dips

Operation Procedure 12.3

Wind and PV facilities > 2 MW must to withstand voltage dips

Solution 6.- Reactive Control

Operation Procedure 7.5 of power factor

Royal Decree Law 9/2013:

- 1. Mandatory range: 0,98 inductive 0,98 capacitive
- 2. Facilities with P > 5 MW must follow the instructions of the system operator (TSO), in a range 0,95 inductive 0,95 capacitive

E.g, in 2013, TSO gave special instructions 20 times, which involved about 1.300 facilities

4 Economic regulation

Former economic regulation 1998-2013

Feed-in tariff or Feed-in Premium

4 Economical regulation

New regulation (existing facilities) 2014

The concept of **reasonable profit**, defined as **profitability of the project before taxes (Internal Rate of Return IRR),** which shall be equal to the yield in the secondary market of the Obligations of the State to ten years, more a suitable differential.

7,4%

- E **1.500 S:** IRR = Coligations of the State to ten years more (1st regulated period).
- Standard installations are considered for the calculation of the economic incentive every regulatory period (6 years), with review of parameters to obtain a reasonable profitability

The remuneration regime will be based on their **market participation**, completed with a **economic incentive to investment (Re)** to obtain a reasonable profit (€/MW).In your case, also a **economic incentive to operation (Ro)** covering operational costs (OPEX): €/MWh

4 Economical regulation

Evolution of total premium

4 Economical regulation

New regulation (new facilities): Auctions for new facilities

		Wind	Solar PV	Biomass/ Other	TOTAL
	Capacity (MW)	500	-	200	700
1st Auction: 14/01/2016	Support (€/MW)	0	0	0 (1)	
2nd Auction: 17/05/2017	Capacity (MW)	2.980	1	19	3.000
	Support (€ MW)	0	0	0	
3rd Auction: 26/07/2017	Capacity (MW)	1.128	3.909	-	5.037
	Support (∉ MW)	0	0	-	
TOTAL	Capacity (MW)	4.608	3.910	219	8.737

Results: zero economic incentive **Remuneration:** market price

(1) Ministerial Order IET/2212/2015 sets a operation incentive for Biomass plants of 53,292 €/MWh

5 Self-consumption regulation

New regulation

Net metering vs. Net billing Balance of power vs. Economic balace

5 Self-consumption regulation

New regulation

DIRECTIVE (EU) 2018/2001, of 11 December

Renewables self-consumer (RSC): It generates renewable electricity for its own consumption, and who may store or sell self-generated renewable electricity (those activities do not constitute its primary commercial or professional activity)

Renewable energy community (REC): jointly acting as renewables selfconsumers. It is a group of at least two jointly acting renewables selfconsumers who are located in the same building or multi-apartment block

Member States may apply non-discriminatory and proportionate charges and fees

5 Self-consumption regulation

New regulation

Law 23/2013, and RD Law 15/2018

Self-consumption (SC):

- **1. Supply with self-consumption without surplus**. Consumer with installation of generation, not registered, for own consumption, connected to the internal network. A single subject, <u>the consumer</u>.
- Supply with self-consumption with surplus. Consumer associated with a production plant, registered, connected to the internal network. Sale of surplus. Two subjects, <u>the consumer</u> and <u>the producer</u>.

The **access tariff** are removed by the self-consumed energy (*tax to the Sun*)

It allows **shared consumption** (with ot whitout the network)

New role of the **Suppliers**: retail (purchase and sell electricity), efficiency (ESCO Energy Service Companies), recharge (Manager Recharge EV), representative od RES (Representative storage and sell RES in the market) ²⁷

Equivalences

There are tree kind of generators

Cogeneration: 1 MWh >= y GO

 \Rightarrow High efficiency cogeneration

• y (equal to electricity of Cogeneration, according its energy efficiency)

System Annotations in Count: Web Page CNMC

Participation of the agents (generators and suppliers)

GENERATORS

Participation of the agents (generators and suppliers)

SUPPLIERS

6 Guarantee of origin and labeled regulations

Origin of the mix of generation and origin of the mix the electricity retailed (last year)

	MIX PRODUCCIÓN	MIX COMERCIALIZADORA GENÉRICA
MIX ENERGIA		
	%	%
Renovables	32,0%	5,2%
Cogeneración de Alta Eficiencia	0,7%	0,1%
Cogeneración	10,2%	14,4%
CC Gas Natural	14,4%	20,2%
Carbón	17,5%	24,6%
Fuel/Gas	2,7%	3,8%
Nuclear	21,5%	30,3%
Otras	1,0%	1,4%
EMISIONES DE DIOXIDO DE		
CARBONO	0,31	0,43
kg de dióxido de carbono por		
kWh	D	F
RESIDUOS RADIACTIVOS AA	0,54	0,76
Miligramos por kWh	D	F

2017

6 Guarantee of origin and labeled regulations

Environmental impact (at least CO2 emissions and radioactive wastes of this mix)

Impacto medioambiental

El impacto ambiental de su electricidad depende de las fuentes energéticas utilizadas para su generación.

En una escala de A a G donde A indica el mínimo impacto ambiental y G el máximo, y que el valor medio nacional corresponde al nivel D, la energía comercializada por su "Comercializadora genérica" tiene los siguientes valores:

Many thanks

http://www.cnmc.es

Luis Jesús Sánchez de Tembleque (luisjesus.sanchez@cnmc.es)