An Economic Model of Distributed Generation

Andrés Chambouleyron

CEARE - ARIAE Seminar May 2019

Ente Nacional Regulador de la Electricidad

enre

Contents

- DG Law 27,424 \rightarrow Decree 986/18 and Res SGE 314/18
- Framework of DG Economic Model: Supply and Demand
- T₁ user's decision to install PV panel: Host Ownership Model
- T₁ user's decision to install PV panel: CB Analysis by Distro
- How to reconcile users' and Distros' incentives: A Coasian approach: Distro owns the PV panel
- Trade off between incentives and market power: potential rents in passthrough \rightarrow regulators must monitor
- Concluding remarks

enre

Argentina's DG Law 27.424 and its implementation

- 3 types of DG users:
 - Small (\leq 3KW), only T₁ users
 - Medium (3KW < K < 300KW) for MT and AT, T_1 , T_2 T_3
 - Large (300KW < K < 2MW for MT and AT): T_3 and GUs
- Net Billing arrangement with bidirectional meter
- Capacity of DG equipment $\theta K \leq$ Installed capacity K, $\theta \leq 1$
- DG user will consume self generated electricity and inject eventual surpluses into the Distro's network
- DG user will collect ($P_F + T$) plus losses for each KWh injected

Argentina's DG model: Self – consume selling eventual surpluses to the grid

Ente Nacional Regulador de la Electricidad

enre

Andrés Chambouleyron

Supply and Demand in a DG model enre

Ente Nacional Regulador de la Electricidad

Andrés Chambouleyron

PV Panel Installation Decision by a T₁ User : *Host* enre **Ownership Model (HOM) Ente Nacional Regulador** de la Electricidad $P_E + T = Opp. \ cost$ of self - consumption $P_V = variable \ component \ of \ distribution \ rate$ $m_1 + [Q(P_V/k) - \theta kt] P_V + \theta kt (P_E + T) + C$ $Q(P_E + T/k)$ $\leq m_1 + Q(P_V/k)P_V$ T_1 user decides to install PV panel iff P_V $[P_V - (P_E + T)]\theta kt - C \ge 0$ $P_E + T$ $P_V - (P_E + T)$ $\Theta kt \ Q(P_V/k) - \Theta kt$ 7 Andrés Chambouleyron

PV Panel Installation Decision by a T₁ User : *More* incentives to install PV panel if...

 $(P_E + T)$] $\theta kt [P_V]$ *High variable* Low opportunity cost of self Low purchase,

component of user tariff (*i.e.* high avoided cost)

enre

Ente Nacional Regulador

de la Electricidad

consumption

installation and O&M cost

- The higher the ratio (PV/m) the more incentives to install (e.g. California PUC model) \rightarrow problem "*Cost or Revenue Shifting*" \rightarrow cross subsidies
- Fixed charge sunk (irrelevant) as longs as user does not change category between scenarios (not likely in AMBA)
- Fixed charge sunk as long as it does not force disconnection with storage

PV Panel Installation Decision by a T₁ User : *Benefit* enre - Cost Analysis of HOM by the Distro **Ente Nacional Regulador** de la Electricidad $\mathbf{A} P_E + T = Opp. \ cost \ \langle \mathbf{L} \rangle$ $P_V = variable \ component \ of$ of self - consumption distribution rate $(m_1 - CFD) + [Q(P_V/k) - \theta kt] (P_V - CVD)$ $Q(P_E + T/k)$ $+\theta kt \left[P_F + T\right]$ $\geq (m_1 - CFD) + Q(P_V/k)(P_V - CVD)$ *PV panel will be profitable for Distro iff* P_{V} $(P_E + T) - (P_V - CVD) \ge 0$ $P_E + T$ *PV panel will be profitable for user iff* $P_V - (P_E + T)$ $[P_V - (P_E + T)]\theta kt - C \ge 0$ $Q(P_V/k)$ - Θkt 9 Andrés Chambouleyron

Ente Nacional Regulador de la Electricidad

PV Panel Installation Decision by the Distro : *More incentives to benefit from PV panel installation if...*

 $(P_E + T) - (P_V - CVD) \ge 0$

Savings in wholesale costs: What the Distro does not have to spend in wholesale electricity purchases Per unit foregone variable profit: What the distro foregoes per unit of self consumed energy

- For Distro to be ok with PV panels, P_V has to be low (fixed charge *m* high)
- Distribution costs have to be recovered mostly through fixed charges (*sunk* or irrelevant for users) rather than varible charges (*avoidable* for users)
- Problem with fixed charges → 1) Sunk for users, 2) Do not reflect cost reductions due to DG, 3) May encourage disconnection, 4) Too high LI families

> 0

Ente Nacional Regulador de la Electricidad

PV Panel Installation Decision by the Distro: Problem » *Potential Rents in Passthrough*

$$\pi_{w/panel} = (m_1 - CFD) + [Q(P_V/k) - \theta kt] (P_V - CVD) - C$$

$$+ \theta kt (P_E + T) + \theta kt (1 - \delta)P_V$$

a) If $\delta P_V \theta kt = [(P_E + T) + CVD] \theta kt - C$ then:

$$\pi_{w/panel} = (m_1 - CFD) + Q(P_V/k) (P_V - CVD) \quad it's \ ok$$

b) If $\delta P_V \theta kt < [(P_E + T) + CVD] \theta kt - C$ then:

 $\pi_{w/panel} > (m_1 - CFD) + Q(P_V/k) (P_V - CVD)$ it's **NOT** ok

Regulator has to make sure passthrough price is competitive!!

Andrés Chambouleyron

Further Research (2nd part of the paper...)

- Privately determined # of PV users socially optimal? NO....
- Users do not internalize either (short and long term) network cost reductions due to PV DG or externalities (*i.e.* fossil fuel pollution)
- Socially optimal # of PV users → min (Private + Social Cost)
- Can centralized socially optimal solution be achieved through decentralized negotiations? Maybe...Coase theorem?
- Some degree of vertical integration + regulation of passthrough of wholesale prices may be necessary
- # of PV users under VI ~ socially optimal? Don't know
- How much regulation is necessary?

Concluding Remarks

- Users will install PV panels whenever variable (*avoidable*) charges are high → problem: more incentives in T₁ – R categories than in T₂ or T₃ that have more financial strength
- Distros will benefit from PV installation whenever variable
 (*avoidable*) charges are low and fixed (sunk) charges are high
- This contradiction may be mitigated by adopting a Coasian approach to externalities \rightarrow Assign property rights of PV panels to Distros and let both parties reach a mutually beneficial agreement \rightarrow Regulator has to monitor passthrough of δP_V

Back – up Slides

enre **Ente Nacional Regulador** de la Electricidad

PV Panel Installation Decision by a T₁ User : *Host* Ownership Model (HOM)

Andrés Chambouleyron

Andrés Chambouleyron

enre

Final Tariffs by User Type: T1, T2, T3 and GU

Small Demands $0 \le T_1 - R - G \le 10$ KW (load not metered)

$$T_1 = CFD_{R/G} + \left[P_E(1+l_E) + \frac{P_K(1+l_K) * FCE_1}{730 * FC_{R/G}} + T + CVD_{R/G}\right] Q_1 (P_V/K)$$

- Medium Demands: 10 KW $\leq T_2 \leq 50$ KW (load metered) $T_2 = CFD_2 + P_K(1 + l_K)FCE_2 + [P_E(1 + l_E) + T + CVD_2] Q_2 (P_V/K)$
- Medium Large Demands T_3 : 50 KW 300 KW and > 300 KW

$$T_3 = CFD_3 + P_K(1 + l_K)FCE_3 + [P_E(1 + l_E) + T] Q_3 (P_V/K)$$

(T₂ + T₃) toll + Large Demands (GU's) (load metered, TOU pricing)

$$T_{2/3} = CFD_{2/3} + P_K l_K FCE_{2/3} + [P_E l_E + T] Q_3 (P_V/K)$$